1. Образующая конуса равна 26 и наклонена к плоскости основания под углом 60°. Найдите площадь боковой поверхности конуса.

1) 338π

2) $338\sqrt{3}\pi$ 3) 169π 4) $260\sqrt{3}\pi$

2. Площадь осевого сечения цилиндра равна 10. Площадь его боковой поверхности равна:

 $1) 5\pi$

2) 10π

3) 20π

4) 20

5) 10

3. Объем конуса равен 5, а его высота равна $\frac{1}{2}$. Найдите площадь основания конуса.

1) $\frac{5}{6}$ 2) $\frac{10}{3}$ 3) 10 4) 30 5) $\frac{15}{2}$

4. Образующая конуса равна 17, а высота — 8. Найдите площадь боковой поверхности конуса.

1) 153π

2) 255π

3) 127.5π

4) 510π

5) 136π

5. Точки А, В, С лежат на большой окружности сферы так, что треугольник ABC — равносторонний. Если $AB = 3\sqrt{6}$, то площадь сферы

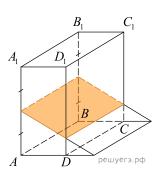
1) 144π

2) 72π

 $3) 36\pi$

4) 18π

5) 68π


6. Плоскость, удаленная от центра сферы на 8 см, пересекает ее по окружности длиной 12π см. Найдите площадь сферы.

1) $144\pi \text{ cm}^2$

4) $400\pi \text{ cm}^2$

2) $100\pi \text{ cm}^2$ 3) $200\pi \text{ cm}^2$ 5) $800\pi \text{ cm}^2$

7. $ABCDA_1B_1C_1D_1$ — прямоугольный параллелепипед такой, AB = 12, AD = 3. Через середины ребер AA_1 и BB_1 проведена плоскость (см.рис.), составляющая угол 60° с плоскостью основания АВСО. Найдите площадь сечения параллелепипеда этой плоскостью.

1) 72 2) $36\sqrt{3}$ 3) 36

4) 18

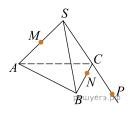
5) $36\sqrt{2}$

8. Через точку A высоты SO конуса проведена плоскость, параллельная основанию. Определите, во сколько раз площадь основания конуса больше площади полученного сечения, если SA:AO=2:3.

1) $6\frac{1}{4}$ 2) $7\frac{1}{4}$ 3) $2\frac{1}{4}$ 4) $1\frac{1}{2}$ 5) $2\frac{1}{2}$

9. Секущая плоскость пересекает сферу по окружности, радиус которой равен 2. Если расстояние от центра сферы до секущей плоскости равно 4, то площадь сферы равна:

1) 40π


2) 20π

3) 160π

4) 85π

5) 80π

10. В тетраэдре SABC с ребром 24 точка P принадлежит SC так, что SC : PC = 2 : 1 и $AS:AM=2:1,\ CN:BN=1:3.$ Найдите площадь сечения тетраэдра плоскостью MNP.

1)
$$18 + 12\sqrt{7}$$
 2) $27\sqrt{37}$ 3) $18 + 3\sqrt{37}$ 4) $81\sqrt{3}$ 5) $9\sqrt{3}$

- 11. Найдите площадь боковой поверхности правильной треугольной пирамиды, если длина биссектрисы ее основания равна $4\sqrt{3}$ и плоский угол при вершине $2 \arctan \frac{4}{5}$.
- 12. В основании пирамиды лежит прямоугольный треугольник, длина гипотенузы которого равна 6, острый угол равен 30°. Каждая боковая грань пирамиды наклонена к плоскости основания под углом, равным $\arccos\frac{\sqrt{3}}{10}$. Найдите площадь боковой поверхности пирамиды.
- 13. Найдите площадь полной поверхности прямой треугольной призмы, описанной около шара, если площадь основания призмы равна 7,5.
- **14.** Сфера проходит через все вершины нижнего основания правильной четырехугольной призмы и касается ее верхнего основания. Найдите площадь сферы, если площадь диагонального сечения призмы равна $\frac{9\sqrt{3}}{\pi}$, а высота призмы в два раза меньше радиуса сферы.
- 15. Куб вписан в правильную четырехугольную пирамиду так, что четыре его вершины находятся на боковых ребрах пирамиды, а четыре другие вершины на ее основании. Длина стороны основания пирамиды равна 2, высота пирамиды 6. Найдите площадь S поверхности куба. В ответ запишите значение выражения 4S.
- **16.** $ABCA_1B_1C_1$ правильная треугольная призма, у которой сторона основания и боковое ребро имеют длину 6. Через середины ребер AC и BB_1 и вершину A_1 призмы проведена секущая плоскость. Найдите площадь сечения призмы этой плоскостью.
- **17.** $ABCDA_1B_1C_1D_1$ куб, длина ребра которого равна $4\sqrt{6}$. Сфера проходит через его вершины B и D_1 и середины ребер BB_1 и CC_1 . Найдите площадь сферы S, в ответ запишите значение выражения $\frac{S}{\pi}$.
- **18.** Квадрат, длина диагонали которого равна 8, лежит в плоскости α . Сфера касается плоскости α в точке пересечения диагоналей квадрата. Найдите площадь сферы, если расстояние от центра сферы до вершины квадрата равно $4\sqrt{2}$.
 - 1) 8π 2) 16π 3) 64π 4) $32\sqrt{2}\pi$ 5) 32π
- 19. Цилиндр пересечен такой плоскостью, параллельной оси цилиндра, что в сечении получился квадрат площадью 100. Найдите значение выражения $\frac{S}{\pi}$, где S площадь боковой поверхности цилиндра, если расстояние от оси цилиндра до плоскости сечения равно $\sqrt{39}$.
- **20.** Через вершину P конуса и хорду AB его основания, стягивающую дугу в 90°, проведено сечение. Найдите значение выражения $\frac{\sqrt{2}\cdot S}{\pi}$, где S площадь боковой поверхности конуса, если периметр этого сечения равен $12\sqrt{2}$ и $\angle PAB=60^\circ$.